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For  r-~2 let p(n, r )  denote the maximum cardinality of a subset A of  N = { 1 ,  2 . . . .  , n} 
such that  there are no  B c  A and an  integer y with S b = y ' .  I t  is shown that  for any e >-0 and  

bEB 
n>-n(e), (l+o(l))2~/t'+l>n('-l>/t'+l)~_p(n, r)~_n~§ for all r_~5, and that for every fixed r~_6, 
p(n,r)=(l+o(1)).21/t'+~)n (~-1)/('§ as n ~ .  Let f(n,m) denote t h e m a x i m u m c a r d i n a l i t y o f  
a subset A of  N such that  there is no BoA the sum of whose dements  is m. I t  is proved that for 
3n6JS*'~-m~--n~/20 log ~ n and  n~-n(6), f(n, m)=[n[sJ+s-2, where s is the smallest integer that  
does not  divide m. A special case of this result establishes a conjecture of Erd6s and Graham.  

Introduction 

Let n be an integer and define N =  {1, 2 . . . . .  n}. For a set A c N ,  let A* 
denote the set of all sums of subsets of A, i.e. A*={b ~ b: BC=A}. There are several 

recent and less recent problems and results, that assert that if IAI is large enough, 
then A* must contain some numbers of prescribed type. See [5], [3], [I], [2], [4]. In 
particular, Erd6s [3] has recently asked for the maximum cardinality p(n, 2) of a 
subset A of N such that A* contains no squares. He observed that 

(1.1) p(n, 2) _~ (I + o(1))21/Snl/S 

and in [1] it is noticed that p(n, 2)~_c2n/log n. This is considerably improved in [4], 
where it is shown that for every e>0,  

(1.2) p(n, 2) _~ can a/4+ ,̀ 

provided n>no(~ ). Here and throughout this paper, the numbers cl, c~, Ca, ..., 
always denote some absolute positive constants. In this paper we further improve 
(1.2) and show that for every e>0  

(1.3) p(n, 2) ~_ n 2/s+~, 

provided n>nl(8). More generally, for r_~2 let p(n, r) denote the maximum cardi- 
nality of  a subset A of N such that there is no r-th power of an integer in A*. An easy 
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generalization of  (1.1) shows that 
(1.4) p(n, r) _~ (1 + o(1)). 21/('+1). n ('-1)/(r+1) 

for every fixed r_~2. Indeed, let p be the smallest prime such that the sum of  the 
elements in the set A =  {a6N: pla} is less than pr. One can easily check that 
p=(l+o(1))2-x/t '+l).n sit'+1), and hence [Al>-(l+o(1))21/(r+~).n ~'-x)/('+t~. As 
each member of  A* is divisible by p and is smaller t h a n / r  (1.4) follows. The follow- 
ing result shows that (1.4) is sharp for every r_~6. 

Proposition 1.1. 
(i) For every fixed r>=6 

(1.5) p(n, r) = (1 + o(1))21/('+1)n ('-l)l(r+n. 

(ii) For every 2<=r-<5, 8 > 0  and n>n0(e) 

(1 + p(n, r) <_- n 

An estimate similar to (1.5), but only for r ~  10, is proved in [4]. 
For  rn_~l, le t f (n ,  m) denote the maximum cardinality of  a set AC=N such 

that rnr A*. Let snd(m) denote the smallest integer that does not divide m. Clearly 
f(n, m)~=Ln/snd(m)]. Indeed, the set of  all multiples of  snd(m) in N has cardinality 
[n/snd(rn)l and contains no subset the sum of  whose elements is m. In [1] it is shown 
that for every n 1 +~< m <  nS/log~n, f(n, rn) ~ _ c (u). [n/snd(m)]. It is conjectured in [1] 
that  in fact in this range f(n,m)=(l+o(1)).n/snd(m).  This is proved in [4] for 
n logn<m<n 3/s. The following theorem, that determines f (n ,m)  precisely for 
3n5/3+~< m <  nS/20 log s n, and n >  n0(u) establishes the conjecture for this range of  m. 

Theorem 1.2. For every u>0,  n>n(u) and every m satisfying 

3nSla+~<m< nS]20 log S n, 

f(n,  m) = + snd(m)-2 .  

An easy consequence of  this Theorem is that for every n there is an m such that 
f(n, rn)=(1/2+o(1))n/logn: simply take as m the least common multiple of  all 
integers smaller than s, where s is the largest integer so that this common multiple 
is still at most nS/20 log s n. By the prime nmnber theorem this gives s =  (2+  o (1))log n, 
and hence f(n,m)=(1/2+o(1))n/logn. This verifies a conjecture of  Erd6s and 
Graham [3], who observed that f(n, m)~_(1/2+a(1))n/log n for all n, m. 

The estimates (1.3) and (1.5), together with the p roof  of  Theorem 1.2 follow 
from the following, somewhat technical, result. 

Proposition l.3. Let A={al ,  a~ . . . . .  a,,} be a subset of  cardinality x of  

N =  {1, 2 . . . . .  n}. Define S a =  1/2 z~ at and B a =  1/2 a~. Suppose that 
i = 1  t 

x > n  ~ts+~, where ~>0 and n>no(8 ) and suppose, further, that 

(1.6) I{ila, = 0(modq)}l  ~_ x - n  s/3 for all q ~= 2. 

Then every integer M satisfying 

(1.7) I M - S a l  <- Ba 



SUMS OF SUNSETS 299 

belongs to A*. Moreover; the number of  representations of  M as a sum ~ etat with 

8iE {0, 1} is 
- ( M  - S A ) ~  

2 '~ ~ 
(1 .8)  (1 + o ( 1 ) ) -  - -  e 

The proof of Proposition 1.3 is analytic, and is given in Section 2. In Section 
3 we apply this proposition to derive the upper estimates 0.3) and (1.5) (and to 
prove Proposition 1.1). In Section 4 we prove Theorem 1.2 and Section 5 contains 
some concluding remarks. 

2 The  P r o o f  o f  P r o p o s i t i o n  1 .3  

Let s be a fixed positive number, and suppose that n is sufficiently large, 
x>n ~/8+" and that A =  {al; a~ . . . . .  a~} is a subset ofcardinality x of N =  {1, 2 . . . . .  n} 

satisfying (1.6). For l~_j<=x define q~j(e)=l/2(l+e~i~ 0 and ~p(ct)=/-~o~(e). 
Jffil. 

1 

For an integer M define .YM = 2 x f (e) e - 2 " ~  de. Clearly, JM is simply the number 
0 

of solutions of the equation ~ ~iai=M with 8i~{0, 1}. Put FM(e)=q~(e)e -2"t~M 
1-1/L 

and L=[n~+"|. Since FM(e) hasperiod 1,)'M=2 ~ f F~(e)d~. Split the interval 
--I /L 

[ -  l/E, 1 -  IlL] into the major are/1= [ -  l/L, I/L] and the minor arc h =  
=[I/L,  1--1]L]. In order to prove Proposition 1.3 it clearly suffices to prove that 
for every M that satisfies (1.7): 

(2.1) 

and 

(2.2) 

hold. 

1 
IFM(~)I ~-- 7 for all ~E12 

�9 1 
f F (e)are = (1 +o(1)) .  1/2nB-------~A 

l i  

--(M--SA)*., 

e zn~ 

We first establish (2.1). As is well known, every real e has a representation 
~=p/q+z where (p ,q )= l ,  0 < q < L  and Izl<l/qL. For aE12=[1]L,l--1/L] 

[ w , .  h 

it is obvious that in this representation q=>2. Clearly q~s(~)= 1/2( l+e~" ' t~§176 
and [zajl<n](qL)< 1/2q. For O~_s<q, let m~ denote the number of j, l~_j~_x 
that satisfy paj-s(mod q). We consider three possible cases, according to the value 
ofq. In our estimates we use the trivial fact that I%(~)1_~ 1 and the easy inequality 
(1/2) ll+e2~iYl~_e-~rl which hold for all 0_~y~ 1/2. As before, cl, c~, cs, .... always 
denote absolute positive constants and whenever needed we assume that n is sutfi- 
eiently large 

Case 1. q>n. 
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In this case ms-<= 1 for all s and hence, clearly 

[~2-1 1 2~, ~-I,_.____L 2 -1 1 2~, ,s+l/~ 
19(~)1 ~- 1-/ ~ - I I + e  ~ I" /-/" ~ I I + e  ~ I ~- 

x 2 

H e-C1 q'-r ~_ e -cffi q'-~- .~ e-C~ L---T--.< e - c f f i n .  _ _  

s = l  - -  - -  << /,/3 " 

Case 2. q< lOn/x(< 10nl/3- 9. 
Since A satisfies (1.6) we conclude that ~. ms>=n z13. Hence 

s ~ 0  

ns/3 

Iq~(e)l ~- 1+  <_- e <= e - ,  <<-~-.  

Case 3. lOn/x<=q<-n. 
In this case m,<=[n/q]<=2n]q for all s and hence 

xq 

I~0(~)1 -~ I <- e-C" " ~  q = e-~" .-7 <_ e _ ~ . ~ . < <  1in 3. 
S = I  

Since IF~(~)I = I~0(~)1 this completes the proof  of  (2.1). 

Next we prove (2.2). Put S=SA=(1/2) ai and B=BA=(1/2) a~ 
i = 1  i 

and M=S+m.  By (1.7)Iml<-B. Notice that B2~_1/4 ~ i~>=c6x~=c6n~ +~ and 
i = 1  

hence B~=c7 n~+(~/~)~. Since L=[n~+~ I we conciude that for b=lOf l -~ /B ,  
b~_I/L holds. Define J~=[-b,b], J2=[-1/L, -b] ,  J3=[b, 1/L] and G~= 
= (1~_i<-3). Clearly f FM(~)d~=GI+G~+Gz. For every ~ l t =  

= I - - I / L ,  I/L], Io~ajl~l/n ~ holds. By the Taylor expansion formula, for every 
j, l<_-/~_x, 

H e n c e  

that 

and hence 

- x - -2hi= ay - --2rr~iBr 
Fu(a) = (/-/(r  2 ) ) -e  -2'a~m = e t ''~ J .  

j = l  

I f  [~[_~b=10 lol/Yo~/B then 
1 1 

[FM(~)[ ~ e -2~B~a+~ ~ << / 2 2 0 0 ~ ( 1 +  o(1)) /23 
I 

IG2+G31<<I/n 3. Similarly, since f e-2~B~o+~ ~ we conclude 
[~tl~b 

f FM(OOdcr = (;1+o(-~)<= fe-2~'~*B2-2'a~m.(1 +o(1)) .  
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However, as is well known (see, e.g., [6]), 

1 F 1 - Z  ~, e- T ta+~tu dt = e 2 

1 / ~  _.~ 
d 

Substituting t=2rr~B and u=m/B we obtain that 

1112 

m f = (1+ o(1)) t/2~rB2 e 2B, 
11 

This establishes (2.2) and completes the proof of Proposition 1.3. 1 

3 Forbidding r-th powers 

In this section we prove Proposition 1.1. We start with the following simple 
consequences of Proposition 1.3. 

Lemma 3.1. Let A be a subset of  cardinality x of  N= {1, 2 . . . .  , n} and let SA denote 
half the sum of  its elements. Suppose that x > n  ~18+*, where 6>0 and n>n(e) and 
suppose, further, that 

X 
(3.1) [{aCAla =- O(modq)}[ ~- x -  21ogn for all q _~ 2. 

Then every integer M satisfying 

( 1 
(3.2) ~1 4 log nJ  S~I ~- M <= SA 

belongs to A*. 

Proof. Suppose A =  {al, a2 . . . . .  ax} where l~_al<a2< ...<ax~_n. For every integer 
j, L(1-1/(4 log n))xJ~_j<-x, define Aj={al . . . . .  aj}. Thus, in particular, Ax=A. 

Define S~=(1 /2 )~ ' a ,  and B j=(1/2) z~a~. Clearly S~_Sx_I~_... and 
1~1 i = l  

B~>=B~_t ~_ .... It is also easy to check that for the smallest j ( j=  [ (1-  1/(4 log n))x]), 
SiN(l- -  1/(4 log n)). S~, and that every Bj+I is bigger than the difference between 
S; and Sj+I. Since each A 1 is obtained from A by deleting less than [x/(4 log n)l 
elements, (3.1) implies that for e a c h j  

I{a~Aala =_ 0(modq)}[ < = x - ~  
X 

2 log n 
~- IAj[-  n 2la for all q _~ 2. 

Hence one can apply Proposition 1.3 to each Aj and conclude that every in- 
teger M satisfying (3.2) belongs to A*. This completes the proof. 1 

Lemma 3.2. Suppose e>0,  n>n(e) and suppose A is a subset o f  cardinality x of  N, 
where x>2n  e/z+~. Then there exist an integer k, l~_k~-2n/x and a subset 
B= {bl . . . .  , br} of  cardinality r~_x/2 o f  A satisfying the following: 
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O) b~=kd~ for all l~_i<=r, where dl . . . .  , dr are integers, and 

(ii) I f  S= 1/2 2 d~ then every integer K satisfying ( 1 -  1/(4 log n)) S<= K<= S belongs 
l=1 

to {dl, d2 . . . . .  d,}*, (and hence k .  K belongs to A*). 

Proof. I f  ,4 satisfies (3.1) then the assertion follows immediately from Lemma 3.1 
(simply take k =  1, B=A).  Otherwise, choose a number q, for which (3.1) is violated 
and define 

`4~ = {aEAla =_ 0(modql)}, -~1 = ~ a laEAI[. 
t q~ 

If  ,4~ satisfies (3.1), then Lemma 3.1 gives the desired result with k=q~, B=AI .  
Otherwise choose a number q2 for which (3.1) is violated and define 

A 2 =  {aEAala~O(modqxq2)},  A2 = ~  a ~ l a E A ~ .  
t qt qz . j 

Here, again, ifA~ satisfies (3.1), the desired result with k=qtq~ and B=A2 follows. 
Else, we repeat the same process. Clearly, this process must stop after at most log n 
steps. Since in each step the new set A~+~ is of cardinality 

IAII x 
I & + i I ~ l & l  - - ~ - I A ~ I  2 log n 2 log n 

we must stop with a set B of cardinality r>-_x/2, and since all elements in this set 
are distinct and divisible by k, k<= 2nix. This completes the proof. II 

An immediate consequence of the last Lemma is the following. 

Lemma 3.3. Suppose ~>0, n>n(s), x>2n  ~/3+~ and A c N ,  [A[=x. Then there is 
an integer k, k < 2nix and a number S >= x ~] 16 such that every integer M which satisfies 

1 ] kS  M ~ kS  (3.3) k lM and 1 41ogn ,  ~ -- 

belongs to A*. 

Proof of Proposition 1.1, part (fi). In view of inequality (1.4) it suffices to prove the 
upper bound. Suppose e>0,  n>n(e), x > n  2/3+~ and A c N ,  IAl=x. We claim that 
there are integers Y2, Y3, Y4 and Y5 such that 

(3.4) {Y~, Y~, Yl, Y~} = `4* 

(and hence p(n,r)~_n2/a+~ for all 2 ~ r ~ 5 ,  n>n(e)). 
Indeed, by Lemma 3.3 (with ~'<e), there is an integer k<=2n l/a-* and a 

number S>=(1]16)n 4/a+~* such that every integer M that satisfies (3.3) belongs to A*. 
One can easily check that since S:~f2(k4.n69 there are integers z2, zz, z4, z5 such 
that 

{,( ) } {z~.k,z]-k z ,z l .k  3 ,z [ 'k  4 } c  y 1 1 . S < - y < = S  . 
= 4 log n 

The numbers yi=zik  (2~_i~_5) satisfy (3.4) and complete the proof. | 
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Lemma 3.4. Suppose e>0,  n>n(e),  and let A be a subset o f  cardinality x o f  N, 
where x >  3n 2/s+* log n. Then there exist a subset G= {gl . . . . .  g,} o f  cardinality t o f  
A, and an integer q satisfying the following: 

(i) t~_x--n 2Is 
(ii) q<-n/t 

(iii) Each gi is divisible by q. 
t 

(iv) I f  S=  ~ gi then every integer M, which is divisible by q and satisfies 
i=1 

n2/3+~ n 2/3+ 
- -  . S + n4/31og n ~_ M ~_ • - - -  . S -  na/31og n 

t t 

belongs to G ' c A * .  

Proof. By applying Lemma 3.2 (with d < e )  to the set o fn  2/3+~ smallest elements of  A, 
we obtain a subset B=B1 of cardinality f2(n 2/s) of  A and an integer k=k~<-n l/s, 
so that each element of  B1 is divisible by k and B~' contains a long arithmetic progres- 
sion of  multiples of  k (containing at least 12 (n 4/3+ 2'/log n) => f2 (n a/a) numbers). Sup- 
pose that 
(3.5) I{aCA l a ~ 0 (rood k)} I -> k ~'. 

Then there is an i, i ~ 0 ( m o d  k) such that I{aEAla--i(modk)}l~_k. Let al . . . . .  ak 
be k distinct members of  A, each congruent to i modulo k=k~.  Define Bz=BxU 
U{a~ . . . . .  ak,}, k=k2=g.c.d.(kl ,  i). One can check that each element of  B_o is di- 
visible by k=k2 and that B* contains an arithmetic progression of at least O(n 4/~) 
multiples of k =  k2. I f  (3.5) still holds (for the new k) we continue the same process. 
Clearly it must stop after at most log n steps (as each ki is a proper divisor of  the pre- 
vious one). When the process stops we have a set B of  at most n2/S+'+nl/Slog n 
elements. Each element of B is divisible by k. Moreover, all but at most k2<=n 2Is 
of the elements of  A are divisible by k. Also, B* contains an arithmetic progression of  
O(n 4r terms of  multiples of  k. Define q = k  and G =  {aEAla=O(mod k)}, t =  [G[. 
Then t ~ _ x - n  ~/'a and clearly t<-n/q as all members of  G are distinct. By adding to 
B* all elements in G \ B ,  one by one, we conclude that G* contains every multiple of  
k =  q whose distance from 0 and from ~ g is greater than Z b. However, dearly 

gEG bEB 

n2/3 + r 
b <= - - .  S + n 4/3 log ~,, 

b ~ e  t 

where the first term is a bound on the sum of  the n 2/3+~ smallest elements of  A, and 
the second is a bound on the sum of  the other elements added to B during the process 
described above. Thus G, t and q satisfy (i)--(iv), as needed. [] 

Proof of Proposition 1.1, part (1). In view inequality (1.4) it suffices to prove the upper 
bound. Fix r_~6 and f i>0 and suppose A is a subset of  cardinality x_~( l+f i ) .  
�9 2~/('+X)n('-~>/('+l) of  N. We must show that there is an integer y such that y'CA*. 

Apply Lemma 3.4 to A to get G, t and q satisfying (i)--(iv). 
Consider two possible cases. 

Case 1. 
n2/3+* 

qr  ~ - - .  S .-]- n 4/3 log n.  
t 
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In this case, we claim that q'CG*C_A*. Indeed 

t 
S = ~ g i  >-- q(1 + 2 + . . .  + t )  > q f  ~- q(x-n2t3)" = (1+o(1))  qx2 

i=1 2 = 2 2 " 

Since q~_n / t=( l+o (1 ) )n / x  and x>-_(l+J)2vc'+~)nC'-~)/c'+l) one 
checks that 

rl213+~ 
q" <~S ~ S - n 4 / 3 1 0 g n  = ( l + o ( 1 ) ) S  

easily 

and hence q'CG*, by (iv). (Recall that r=>6 and hence x>=t~_f2(nS/r)). 

Case 2. 
n2/3 + 

q" ~- ~ S + n 4/3 log n. 
t 

In this case 
2nZ/3+e 

q ' < ~ . S  
t 

(as S>-t2/2 and t=f2(nS/7)). Hence 

S t 
> ~ = f2 (n 517-s/~ qr 2n2/3+~ 

Thus, the arithmetic progression of  multiples M o fq  in the range described in Lemma 
3.4, (iv) contains I2(n 1/21-") multiples of  q', and the ratio between the largest and the 
smallest is (much) greater than 2. This implies that one of  these multiples is of  the 
form q'z-" for some integer z and hence G ' c A *  constains an r-th power in this case, 
too. This completes the proof of  the Proposition. II 

4. Forbidding One Sum 

In this section we prove Theorem 1.2 staed in Section 1. For  convenience, we 
split the proof into a few lemmas. 

Lemma 4.1. For every sufficiently large n and every m<-__n 2, 

f ( n , m )  >- [ ~ l + s n d ( m ) - 2 .  

Proof. Put s=snd(m)  and suppose m = i ( m o d s ) .  Clearly l<=i<=s-1 and 
s~_ 3 log n. Let A1 be the set of all [n/st multiples of  s in N--  {1, 2 . . . . .  n}. Let A2 
be a set of  i -  1 distinct members of  N, each congruent to 1 modulo s, and let A3 be 
a set of  s - i - - 1  distinct members of  N, each congruent to - 1  modulo s. (Clearly, 
such Az and A3 exist, as n is sufficiently large and s =  < 3 log n). Define A = A1 U A2 U A3. 
Clearly [Al=[n/s]+s-2 .  To complete the proof  it suffices to check that rn~A*. 
However, this is obvious, since no element of  A* is congruent to i modulo ~. II 
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Lemma 4.2. Let s=p k be a prbne power, and let at, ao" . . . . .  as_ 1 be a sequence of  
s -  1 (not necessarily distinct) non zero elements o f  the cyclic group Zs. Then for erery 

S- - t  
i, l<--i~_p--1 there are el . . . . .  es_tE{0, 1} such that in Zs Z e~a~=iP k-t. 

/ = 1  

J 
Proof. For  every j ,  l<-j<-s-1, define Bi={,_~I e,a, Ie,E {0,1}}. Clearly BI= 

=[{0, at}i=2, and BjC_Bj+t. We claim that i f  Bj=Bj+x for some j < s - - 1 ,  then 
B~ contains the cyclic subgroup of  Z,  gen6rated by aj+t.  Indeed, if  Bj=Bj+I then 
a~+xEB~ and for every bEB i the element b + a j + t  belongs to Bj+t=B j as well, 
establishing the claim. Since the dements {ipk-t[1-<_i<-p - 1} belong to every sub- 
group of  Z~, the desired result follows in case Bj_Bj+x for some j.  Otherwise 
2=lBd<lBo"l<...<lBs-jI-----s and hence IB,_xl=s, Le., B~=Z s and every element 

8--1 
of Z,  is a sum Z e~ai for some eiE {0, 1}. This completes the proof. II 

l = t  

Lemma 4.3. Suppose 5>0, n>n(e), s<-31ogn and A ~ N  is a set o f  cardinality 
IAl~[n/s]. Then there is an integer q, q<=s such that every integer m satisfying 

n 5/3+~ -< n'/20 logo" = n ' l  "~= n 

and m - 0 ( m o d  q) belongs to A*, and is, in fact, hz {aE A la -O(mod  q)}*. 

Proof. Apply Lemma 3.4 to A to get G, t and q satisfying the conclusions of  the 
Lemma. Clearly here 

n no"/8 n 

s s + l  " 

Hence q<=s. Also S->l+. . .+[n /2J>n~/191og ~ and 

n213+~ 
- - .  S +  n a/z log n <-_ 2n 51z+". 

t 

Hence the result follows from Lemma 3.4. II 

Proof of Theorem l.2. Put s=snd(m) and suppose A c N ,  IAl>-[n/s]+s-1. In 
view of  Lemma 4.1 it suffices to show that  mEA*. Since m<=no"/(2O logo" n), 
s<_ - 3 log n (for sufficiently large n). By Lemma 4.3 there is an integer k, k~_s so that 
every number congruent to 0 modulo k in the range [2n 5/s+'- (n2/20 logo" n)] is in A*. 
I f  k<s ,  then klm, as s is the smallest non-divisor of  m, and hence mEA*, as needed. 
It remains to check the case k=s .  Clearly s=p k is a prime power and m - i p  k-t �9 
�9 (mods)  for some l<-i<=p-1. Also, since IAl>=[n/s]+s-1 there are s - 1  dis- 

tinct elements at . . . . .  a.,-t in A such that a i ~ 0 ( m o d  s). By Lemma 4.2 there are 
S--I  

s,E{0, 1} such that m ' = m -  ~ e.,a,=0(mods).  As m'E{aEAla-O(mods)}* 
i - 1  

since 2nS/3+"<-m'<_no"/(2O logo" n) and m ' = 0 ( m o d k ) ,  we conclude that mEA*. 
This completes the proof. II 
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5. Concluding Remarks 

Proposition 1.3 can be used to prove various other results, besides the estimates 
given in Proposition 1.1 and the p roof  of  Theorem 1.2. For  example, it can be used to 
prove the following two results o f  Erd6s and Freiman [2], conjectured by Erd6s and 
Freud [3]. (One can easily check that both results follow, up to an additive error of  2, 
from Theorem 1.2). 

Proposition 5.1 (see [2]). I f  n= 3 x -  3 is sufficiently large, then for  any subset A o f  
cardinality x o f  N =  {1, 2 . . . . .  n}, A* contains a power o f  2. 

Proposition 5.2 (see [2]). I f  n>n0,  n = 4 x - 4  and A is a subset o f  {1, 2 . . . . .  n} 
o f  cardinality x,  then A* contains a square f ree  number. 

As the proofs of  both Propositions are quite similar to that of  Theorem 1.2, 
we omit the details. 

It seems that the lower bound given for p(n,  r) in (1.4) is closer to the truth 
than the upper bound given in Propositions 1.1. In fact, we believe that p(n,  r ) =  
= (1 + o(1))21/<'+l)nCr-1)/(r+l) for every fixed r->2, as n tends to infinity. The most 
difficult case of  this equality seems to be r =  2. 
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